Reduction operations

Reuction operations

Reduction operations

A reduction operations on a tensor is an operation that reduces the number of elements contained within the tensor.

Tensors give us the ability to manage out data. Reduction operations allow us to perform operations on elements within a single tensor.

Suppose we have the following 3$ imes$3 rank-2 tensor.

> t = torch.tensor([
    [0, 1, 0],
    [2, 0, 2],
    [0, 3, 0]
], dtype=torch.float32)

Common tensor reduction operations

> t.sum()
tensor(8.)

> t.numel()
9

> t.prod()
tensor(0.)

> t.mean()
tensor(.8889)

> t.std()
tensor(1.1667)

Reducing tensors by axes

Suppose we have the following tensor:

> t = torch.tensor([
    [1,1,1,1],
    [2,2,2,2],
    [3,3,3,3]
], dtype=torch.float32)

This time , we will specify a dimension to reduce.

> t.sum(dim=0)
tensor([6., 6., 6., 6.])

> t.sum(dim=1)
tensor([4., 8., 12.])

Argmax tensor reduction operation

Argmax returns the index location of the maximum value inside a tensor.

t = torch.tensor([
    [1,0,0,2],
    [0,3,3,0],
    [4,0,0,5]
], dtype=torch.float32)

If we don’t specific an axis to the argmax() method, it returns the index location of the max value from the flattened tensor, which in the case is indeed 11.

> t.max()
tensor(5.)

> t.argmax()
tensor(11)

> t.flatten()
tensor([1., 0., 0., 2., 0., 3., 3., 0., 4., 0., 0., 5.])

Work with specific axis now:

> t.max(dim=0)
(tensor([4., 3., 3., 5.]), tensor([2, 1, 1, 2]))

> t.argmax(dim=0)
tensor([2, 1, 1, 2])

> t.max(dim=1)
(tensor([2., 3., 5.]), tensor([3, 1, 3]))

> t.argmax(dim=1)
tensor([3, 1, 3])

In practice, we often use the argmax() function on a network’s output prediction tensor, to determine which category has the highest prediction value.

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注