tf.summary.scalar
tf.summary.FileWriter
tf.summary.histogram
tf.summary.merge_all
tf.equal
tf.argmax
tf.cast
tf.div(x, y, name=None)
tf.pow(x, y, name=None)
tf.unstack(value, num=None, axis=0, name=’unstack’)
tf.stack(values, axis=0, name=’stack’)
tf.transpose(a, perm=None, name=’transpose’)
tf.set_random_seed(seed)
tf.reshape(tensor, shape, name=None)
tf.multiply(x, y, name=None
tf.name_scope(args, *kwds)
tf.variable_scope(args, *kwds)
class tf.contrib.rnn.BasicLSTMCell
tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None)
tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)
tf.nn.moments(x, axes, shift=None, name=None, keep_dims=False)
tf.contrib.legacy_seq2seq.sequence_loss_by_example(logits, targets, weights, average_across_timesteps=True, softmax_loss_function=None, name=None)
apply_gradients
tf.distributions.Normal
tf.summary.scalar
https://www.tensorflow.org/api_docs/python/tf/summary/scalar
tf.summary.FileWriter:
https://www.tensorflow.org/api_docs/python/tf/summary/FileWriter
tf.summary.histogram
https://www.tensorflow.org/api_docs/python/tf/summary/histogram
tf.summary.merge_all
https://www.tensorflow.org/api_docs/python/tf/summary/merge_all
tf.equal:
https://www.tensorflow.org/api_docs/python/tf/equal
tf.argmax:
https://www.tensorflow.org/api_docs/python/tf/argmax
tf.cast
https://www.tensorflow.org/api_docs/python/tf/cast
tf.div(x, y, name=None)
参考链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/div
tf.pow(x, y, name=None)
参考链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/pow
tf.unstack(value, num=None, axis=0, name=’unstack’)
https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/unstack
tf.stack(values, axis=0, name=’stack’)
https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/stack
1 ###tf.stack()/unstack(): 2 import tensorflow as tf 3 4 a = tf.constant([1, 2, 3]) 5 b = tf.constant([4, 5, 6]) 6 c = tf.stack([a, b], axis=0) 7 d = tf.stack([a, b], axis=1) 8 e = tf.unstack(c, axis=0) 9 f = tf.unstack(c, axis=1) 10 with tf.Session() as sess: 11 print(sess.run(c)) 12 print(sess.run(d)) 13 print(sess.run(e)) 14 print(sess.run(f))
[[1 2 3] [4 5 6]] [[1 4] [2 5] [3 6]] [array([1, 2, 3], dtype=int32), array([4, 5, 6], dtype=int32)] [array([1, 4], dtype=int32), array([2, 5], dtype=int32), array([3, 6], dtype=int32)]
参考链接:https://blog.csdn.net/u012193416/article/details/77411535
1 ###tf.stack()/unstack(): 2 import tensorflow as tf 3 4 g = tf.constant([[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]],[[13, 14, 15, 16],[17, 18, 19, 20],[21, 22, 23, 24]]]) 5 h = tf.unstack(g) 6 with tf.Session() as sess: 7 print(sess.run(h))
[array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12]], dtype=int32), array([[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]], dtype=int32)]
tf.transpose(a, perm=None, name=’transpose’)
官方链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/transpose
1 ###tf.transpose() 2 import tensorflow as tf 3 4 a = tf.constant([[1, 2, 3], 5 [4, 5, 6]]) 6 b = tf.constant([[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]],[[13, 14, 15, 16],[17, 18, 19, 20],[21, 22, 23, 24]]]) 7 c = tf.transpose(a, [0, 1]) 8 d = tf.transpose(a, [1, 0]) 9 e = tf.transpose(b, [0, 1, 2]) 10 f = tf.transpose(b, [1, 0, 2]) 11 g = tf.transpose(b, [0, 2, 1]) 12 with tf.Session() as sess: 13 print(sess.run(c)) 14 print(sess.run(d)) 15 print(sess.run(e)) 16 print(sess.run(f)) 17 print(sess.run(g))
[[1 2 3] [4 5 6]] [[1 4] [2 5] [3 6]] [[[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] [[13 14 15 16] [17 18 19 20] [21 22 23 24]]] [[[ 1 2 3 4] [13 14 15 16]] [[ 5 6 7 8] [17 18 19 20]] [[ 9 10 11 12] [21 22 23 24]]] [[[ 1 5 9] [ 2 6 10] [ 3 7 11] [ 4 8 12]] [[13 17 21] [14 18 22] [15 19 23] [16 20 24]]]
博客链接:https://www.cnblogs.com/studyDetail/p/6533316.html
tf.set_random_seed(seed)
实例运行参见: Jupyter notebook:TensorFlowAPI
https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/set_random_seed
tf.reshape(tensor, shape, name=None)
Args:
tensor
: A Tensor
.
shape
: A Tensor
. Must be one of the following types: int32
, int64
. Defines the shape of the output tensor.
name
: A name for the operation (optional).
mport tensorflow as tf t = tf.constant([1, 2, 3, 4, 5, 6, 7, 8, 9]) m = tf.constant([1, 2, 3, 4, 5, 6, 7, 8]) n = tf.constant([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]) with tf.Session() as sess: print('t->[3, 3]: ', sess.run(tf.reshape(t, [3,3 ])), ' ') print('m->[2, 4]: ', sess.run(tf.reshape(m, [2,4 ])), ' ') print('n->[3, 2, 3]: ', sess.run(tf.reshape(n, [3, 2, 3 ])), ' ') print('n->[2, -1]: ', sess.run(tf.reshape(n, [2, -1])), ' ') print('n->[-1, 9]: ', sess.run(tf.reshape(n, [-1, 9])), ' ') print('n->[2, -1, 3]: ', sess.run(tf.reshape(n, [2, -1, 3])), ' ')
t->[3, 3]: [[1 2 3] [4 5 6] [7 8 9]] m->[2, 4]: [[1 2 3 4] [5 6 7 8]] n->[3, 2, 3]: [[[ 1 2 3] [ 4 5 6]] [[ 7 8 9] [10 11 12]] [[13 14 15] [16 17 18]]] n->[2, -1]: [[ 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18]] n->[-1, 9]: [[ 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18]] n->[2, -1, 3]: [[[ 1 2 3] [ 4 5 6] [ 7 8 9]] [[10 11 12] [13 14 15] [16 17 18]]]
https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/reshape
tf.multiply(x, y, name=None
import tensorflow as tf #两个矩阵相乘 x=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]]) y=tf.constant([[0,0,1.0],[0,0,1.0],[0,0,1.0]]) #注意这里这里x,y要有相同的数据类型,不然就会因为数据类型不匹配而出错 z=tf.multiply(x,y) #两个数相乘 x1=tf.constant(1) y1=tf.constant(2) #注意这里这里x1,y1要有相同的数据类型,不然就会因为数据类型不匹配而出错 z1=tf.multiply(x1,y1) #数和矩阵相乘 x2=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]]) y2=tf.constant(2.0) #注意这里这里x1,y1要有相同的数据类型,不然就会因为数据类型不匹配而出错 z2=tf.multiply(x2,y2) with tf.Session() as sess: print(sess.run(z)) print(sess.run(z1)) print(sess.run(z2))
[[0. 0. 3.] [0. 0. 3.] [0. 0. 3.]] 2 [[2. 4. 6.] [2. 4. 6.] [2. 4. 6.]]
https://blog.csdn.net/m0_37041325/article/details/77036513
https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/multiply
tf.name_scope(args, *kwds)
Returns a context manager for use when defining a Python op.
https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/name_scope
tf.variable_scope(args, *kwds)
Returns a context manager for defining ops that creates variables (layers).
This context manager validates that the (optional) values
are from the same graph, ensures that graph is the default graph, and pushes a name scope and a variable scope.
https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/variable_scope
class tf.contrib.rnn.BasicLSTMCell
链接:https://tensorflow.google.cn/versions/r1.9/api_docs/python/tf/contrib/rnn/BasicLSTMCell
tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None)
官方链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/nn/dynamic_rnn
链接:https://github.com/MorvanZhou/tutorials/blob/master/tensorflowTUT/tf20_RNN2/full_code.py
tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)
链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/nn/softmax_cross_entropy_with_logits
tf.nn.moments(x, axes, shift=None, name=None, keep_dims=False)
链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/nn/moments
tf.contrib.legacy_seq2seq.sequence_loss_by_example(logits, targets, weights, average_across_timesteps=True, softmax_loss_function=None, name=None)
Weighted cross-entropy loss for a sequence of logits (per example).
tf.distributions.Normal
Aliases:
Class tf.contrib.distributions.Normal
Class tf.distributions.Normal
The Normal distribution with location loc
and scale
parameters.
where loc = mu
is the mean, scale = sigma
is the std. deviation, and, Z
is the normalization constant.
Methods: